Encapsulation of small polar guests in molecular apple peels.
نویسندگان
چکیده
Three aromatic oligoamides have been prepared that have alternating 1,6-diaminopyridine and 1,6-pyridinedicarboxylic acid units at the center of the sequence and two 8-amino-2-quinolinecarboxylic acid units at each extremity. The three oligomers differ in the number--3, 5, or 7-of pyridine units in the sequence. They were designed to adopt helically folded conformations in solution and in the solid state. The sequence of monomers was chosen so that the diameter of the helix is larger in the center than at each extremity, and hence they resemble helically wrapped apple peels. According to modeling studies, the pyridine units were expected to define a polar hollow within the helix that is large enough to accommodate small polar guests, whereas the quinoline units at each end of the oligomeric sequences were expected to completely cap the hollow and transform the helix cavities into a closed shell that may act as a capsule. Crystallographic studies demonstrate that the oligomers do fold into helices that define a cavity isolated from the surrounding medium in the solid state. Depending on the number of pyridine rings, one or two water molecules are bound within the capsules. The crystal structure of a capsule fragment shows that MeOH can also be hosted by the largest oligomer. Solution NMR studies confirm that binding of water also occurs in solution with the same stoichiometry as observed in the solid state. The capsules have distinct signals depending on whether they are empty, half-full, or full, and these species are in slow exchange on the NMR timescale at low temperature. Indeed, the binding and release of water molecules requires a significant conformational distortion of the helix that slows down these processes. The addition of small polar molecules such as methanol, hydrazine, hydrogen peroxide, or formic acid to the largest capsule leads to the observation of new sets of NMR signals of the capsules that were assigned to complexes with these guests. However, water appears to be the preferred guest.
منابع مشابه
The effects of hexafluoroisopropanol on guest binding by water-soluble capsule and cavitand hosts.
Encapsulation of amphiphilic guests in a water-soluble cavitand is enhanced by the addition of hexafluoroisopropanol (HFIP). While binding of n-alkanes in cavitands in HFIP/D2O mixtures was similar to that observed in 100% D2O, the binding of guests with terminal polar groups was quite different. Several α,ω-bolaamphiphiles: alkyldiols (C10-C12), a dinitrile (C14) and a diacid (C16) became enca...
متن کاملAntioxidant activity of apple peels.
Consumption of fruits and vegetables has been shown to be effective in the prevention of chronic diseases. These benefits are often attributed to the high antioxidant content of some plant foods. Apples are commonly eaten and are large contributors of phenolic compounds in European and North American diets. The peels of apples, in particular, are high in phenolics. During applesauce and canned ...
متن کاملSelective Co‐Encapsulation Inside an M6L4 Cage
There is broad interest in molecular encapsulation as such systems can be utilized to stabilize guests, facilitate reactions inside a cavity, or give rise to energy-transfer processes in a confined space. Detailed understanding of encapsulation events is required to facilitate functional molecular encapsulation. In this contribution, it is demonstrated that Ir and Rh-Cp-type metal complexes can...
متن کاملNanoparticles of Cyclodextrins & Their Applications in Food Technology
Cyclodextrins (CDs) are a family of cyclic oligosaccharides which are composed of α (1,4) -linked glucopyranose subunits. Thebest-characterized forms are α, β and γ CD which are consisted of six, seven and eight D-glucose units, respectively. Cyclodextrins are produced from starch by enzymatic degradation. These macrocyclic carbohydrates with polar internal cavities can form complexes with and ...
متن کاملDifferentiation of small alkane and alkyl halide constitutional isomers via encapsulation.
Previously we have demonstrated that host 1 is capable of hydrocarbon gas separation by selective sequestration of butane from a mixture with propane in the headspace above a solution of the host (C. L. D. Gibb, B. C. Gibb, J. Am. Chem. Soc., 2006, 128, 16498-16499). Expanding on the idea of using this host as a means to affect guest discrimination, we report here on NMR studies of the binding ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemistry
دوره 13 30 شماره
صفحات -
تاریخ انتشار 2007